
Beyond UPC

 Kathy Yelick

NERSC, Lawrence Berkeley National Laboratory

EECS Department, UC Berkeley

Berkeley UPC Team

Current UPC Team

• Filip Blagojevic

• Dan Bonachea

• Paul Hargrove (Runtime Lead)

• Steve Hofmeyer

• Costin Iancu (Compiler Lead)

• Seung-Jai Min

• Rajesh Nishtala

• Kathy Yelick (Project Lead)

• Yili Zheng

Former UPC Team Members

• Christian Bell

• Wei-Yu Chen

• Parry Husbands

• Michael Welcome

But Clock Frequency Scaling

Replaced by Scaling Cores / Chip

3

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (in Thousands)

Frequency (MHz)

Cores

Data from Kunle Olukotun, Lance Hammond, Herb Sutter,

Burton Smith, Chris Batten, and Krste Asanoviç

15 Years of exponential growth ~2x year has ended

This has Also Impacted

HPC System Concurrency

Exponential wave of increasing concurrency for forseeable future!

1M cores sooner than you think!

4

Sum of the # of cores in top 15 systems (from top500.org)

Is Exascale a Sure Thing?

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

100 Pflop/s

 10 Pflop/s

Is there a Top500 Law?

Getting to Exascale

A back-of-the-envelope exascale design

• An exascale machine will be built from processors at

roughly today’s clock rate

– 1 GHz 109 (within a factor of 4)

• An exascale machine therefore needs

– 109-way concurrency

• That concurrency likely to be divided as

– 106 chips plus 103 way concurrency (arithmetic units) on chip

• The 1K on-chip concurrency to be divided as

– Independently executing cores with data parallelism

• 16 cores each with 64-way vectors / GPU-warps

• 128 cores each with 8-wide SIMD

– Plus a 1-2 run the OS and other services

6

I only call them a

“core” if they can

execute a thread of

instructions that

are distinct.

There may be another 8-16

hardware threads per core

if bandwidth is high

enough that latency is still

a problem

Multicore vs. Manycore

• Multicore: current trajectory

– Stay with current fastest core design

– Replicate every 18 months (2, 4, 8 . . . Etc…)

– Advantage: Do not alienate serial workload

– Examples: AMD Barcelona (4 cores),

 Intel Nehalem (4 cores),…

• Manycore: converging in this direction

– Simplify cores (shorter pipelines, slower clocks, in-order processing)

– Start at 100s of cores and replicate every 18 months

– Advantage: easier verification, defect tolerance, highest compute/
surface-area, best power efficiency

– Examples: Cell SPE (8 cores), Nvidia G80 (128 cores),

 Intel Polaris (80 cores), Cisco/Tensilica Metro (188 cores)

• Convergence: Ultimately toward Manycore

– Manycore: if we can figure out how to program it!

– Hedge: Heterogenous Multicore (still must run PPT)

7
Slide source: John Shalf

Memory is Not Keeping Pace

Technology trends against a constant or increasing memory per core

• Memory density is doubling every three years; processor logic is every two

• Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Source: David Turek, IBM

Cost of Computation vs. Memory

8

Question: Can you double concurrency without doubling memory?

Source: IBM

What’s Wrong with MPI Everywhere

• We can run 1 MPI process per core (flat model for
parallelism)
– This works now on dual and quad-core machines

• What are the problems?
– Latency: some copying required by semantics

– Memory utilization: partitioning data for separate address
space requires some replication

• How big is your per core subgrid? At 10x10x10, over 1/2 of the
points are surface points, probably replicated

– Memory bandwidth: extra state means extra bandwidth

– Weak scaling: success model for the “cluster era;” will not be
for the many core era -- not enough memory per core

– Heterogeneity: MPI per CUDA thread-block?

• Easiest approach
– MPI + X, where X is OpenMP, Pthreads, OpenCL, CUDA,…

PGAS Languages: Why use 2

Programming Models when 1 will do?

• Global address space: thread may directly read/write remote data

• Partitioned: data is designated as local or global
G

lo
b

al
 a

d
d

re
ss

 s
p

ac
e

x: 1

y:

l: l: l:

g: g: g:

x: 5

y:

x: 7

y: 0

p0 p1 pn
• Remote put and get: never have to say “receive”

• Remote function invocation? See HPCS languages

• No less scalable than MPI! (see previous talks)

• Permits sharing, whereas MPI rules it out!

• One model rather than two, but if you insist on two:

• Can call UPC from MPI and vice verse (tested and used)

What Heterogeneity Means to Me

• Case for heterogeneity

– Many small cores or wide data parallelism needed for

energy efficiency, etc.

– Need one fat core (at least) for running the OS

• Local store, explicitly managed memory hierarchy

– More efficient (get only what you need) and simpler to

implement in hardware

• Co-Processor interface between CPU and

Accelerator

– Market forces push this: GPUs have been separate chips for

specific domains, but they may move on-chip

– Do we really have use this co-processor idea? Isn’t parallel

programming hard enough

But….Optimizing for Multicore:

Almost as Hard (if Not Harder)
Intel Xeon (Clovertown) AMD Opteron (Barcelona)

Sun Niagara2 (Victoria Falls)

Simplest possible problem:
stencil computation: nearest
neighbor relaxation on 3D Mesh
•For this simple code - all cache-
based platforms show poor efficiency
and scalability

•Could lead programmer to believe
that approaching a resource limit

Fully-Tuned Performance

Intel Xeon (Clovertown) AMD Opteron (Barcelona)

Sun Niagara2 (Victoria Falls)

1.9x 5.4x

12.5x

Optimizations

include:

NUMA-

Aware

Padding

Unroll/

Reordering

Thread/

Cache

Blocking

Prefetching

SIMDizatio

n

Cache

Bypass
Different optimizations have

dramatic effects on different

architectures

Largest optimization benefit seen

for the largest core count

Stencil Results

Single Precision Double Precision

P
e
rf

o
rm

a
n
c
e

P
o
w

e
r

E
ff
ic

ie
n
c
y

PGAS Languages for Manycore

• PGAS memory are a good fit to machines with explicitly

managed memory (local store)

– Global address space implemented as DMA reads/writes

– New “vertical” partition of memory needed for on/off chip, e.g.,

upc_offchip_alloc

– Non-blocking features of UPC put/get are useful

• SPMD execution model needs to be adapted to

heterogeneity

DMA

x: 1

y:
x: 5

y:

x: 7

y: 0

Shared

partitioned

on-chip

l: m:
Private on-chip

Shared

off-chip

DRAM

Computer Node

CPU Memory

GPU

GPU

Mem

ory

CPU CPU

GPU

GPU

Mem

ory

Computer Node

CPU Memory

GPU

GPU

Mem

ory

CPU CPU

GPU

GPU

Mem

ory

Network

PGAS

Radical (and Unappealing)

Proposal

Adding teams to SPMD execution model

• These are needed for collectives in any case

• Uses separate teams for fat cores vs thin core teams

Execution model

• Execute SPMD code on either set

• Execute any code you want on each core

– Careful: needs to be the same (data parallel execution) to

run well

– Or still use a different model (annotated loops) for SIMD

parallelism

Features of Successful Languages

• Portability of applications

– Multiple compilers, portable compilers, or both (UPC vs CAF

to date)

UPC Compiler: Designed for Portability

Compiler-generated code (C, asm)

Language Runtime system

GASNet Communication System

Network Hardware

Platform-

independent

Network-

independent

Language-

independent

Compiler-

independent

UPC Code
UPC

Compiler

 GASNet Core

Portability of GASNET

Original vision of conduit development progression
• Build GASNet core (Active Messages) with provided “reference

implementation” of full API on core

• Incrementally develop native implementations of features (put/get,
etc.) of full API

Alternative GASNet progression, use on Cray XT
• Pure MPI: mpi-conduit

– “Runs everywhere, optimally nowhere”

• Hybrid: replaced put/get calls with Portals RDMA

• Pure Portals: Native Core API on Portals

• Firehose to reduce memory registration overheads

Easier parts of implementation first

Better time-to-solution for acceptable performance

Features of Successful Languages

• Portability of applications

– Multiple compilers, portable compilers, or both (UPC vs CAF

to date)

• Interoperability with other models

– Calling MPI from UPC and vice versa

– Necessary for incremental development

• 16 cores on 4 sockets: how many threads & processes?

• 8 cores with 2 hardware threads per core (hyperthreading)

• Processes intermix with MPI; Threads with OpenMP

• Performance tradeoffs unclear: Can we get shared memory with
processes?

Processes vs. Threads

Language Threads

Threads

Processes

HARDWARE

0%

10%

20%

30%

40%

4 8 16 32

IS

0%

5%

10%

15%

20%

25%

4 16 25

BT

0%

5%

10%

4 16 25

SP

0%

5%

10%

15%

4 8 16 32

FT

Threads

Threads

Threads

Threads

NAS Benchmarks – Intel Tigerton

Performance improvement of ProcSM over Pthreads

Features of Successful Languages

• Portability of applications

– Multiple compilers, portable compilers, or both

• Interoperability with other models

– Calling MPI from UPC and vice versa

– Necessary for incremental development

• Performance comparable to or better than

alternatives, including scalability

– This should be a selling point, not 2x slower

• Take advantage of “best” hardware

– Best networks, multicore, etc.

Sharing and Communication

Models: PGAS vs. MPI

• A two-sided messages needs to be matched with a receive
to identify memory address to put data
– Offloaded to Network Interface in networks like Quadrics

– Need to download match tables to interface (from host)

• A one-sided put/get message can be handled directly by a
network interface with RDMA support
– Avoid interrupting the CPU or storing data from CPU

(preposts)

address

message id

data payload

data payload

one-sided put message in PGAS

two-sided message in MPI

network

 interface

memory

host

CPU

GASNet vs. MPI Bandwidth on

BG/P

• GASNet outperforms MPI on small to medium messages, especially when
multiple links are used.

XT4 Performance

• Performance on Franklin,
quad-core XT4 @ NERSC

– NERSC development
machine access for
testing

– Testing infrequently used
code paths in Portals

• Native conduit outperforms
GASNet-over-MPI by 2x

• Latency better than raw
MPI

• Bandwidth equal to raw
MPI

• Recent Firehose support
increased performance by
4% to 8% in bandwidth
(included)

(d
o
w

n
 i
s
 g

o
o
d
)

(u
p
 i
s
 g

o
o
d
)

[Bonachea, Hargrove,

Welcome, Yelick, CUG ‘09]

UPC on BlueGene/P

• Faster dense linear algebra than PBLAS/ScaLAPACK

– Parallel matrix multiplication: 36% faster (256 cores)

– Parallel Cholesky factorization: 9% faster (256 cores)

• Faster FFTs than MPI

• GASNet collectives

 up to 4x faster than

 previous release

• GASNet implemented

 on DCMF layer
0

500

1000

1500

2000

2500

3000

3500

Matmul

(256)

Cholesky

(256)

FFT

(16K)

FFT

(32K)

MPI

UPC

Optimizing Collectives on

Multicore

28

• Many algorithms even for

barrier synchronization

• Dissemination based:

– O(T log T) “messages”

– Time: L*(log T) (L = latency)

• Tree-based

– O(T) “messages”

– Time: 2L*(log T)

Need for Autotuned Multicore

Collectives

29

G

O

O

D

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Intel Clovertown (8) AMD Opteron (32) Sun Niagara2 (256)

T
im

e
 (

n
a
n

o
s
e
c
o

n
d

s
)

Pthread Lib

Dissemination

Tree Push/Push

Tree Push/Pull

Tree Pull/Push

Tree Pull/Pull

Features of Successful Languages

• Portability of applications

– Multiple compilers, portable compilers, or both

• Interoperability with other models

– Calling MPI from UPC and vice versa

– Necessary for incremental development

• Performance comparable to or better than

alternatives, including scalability

– This should be a selling point, not 2x slower

• Take advantage of “best” hardware

– Best networks, multicore, etc.

• Easy to use for a broad set of applications

– Are there applications that do not match UPC well?

Irregular Applications

• UPC originally for “irregular” applications

– Many recent performance results are on “regular” ones

(FFTs, NPBs, etc.); those also do well

• Does it really handle irregular ones? Which?

– Irregular in data accesses:

• Irregular in space (sparse matrices, AMR, etc.): global address

space helps; needs compiler or language for scatter/gather

• Irregular in time (hash table lookup, etc.): for reads, UPC handles

this well; for write you need atomic operations

– Irregular computational patterns:

• High level independent tasks (ocean, atm, land, etc.): need teams

• Non bulk-synchronous: use event-driven execution

• Not statically load balanced (even with graph partitioning, etc.):

need global task queue

31

Two Programming Model

Questions

• What is the parallel control model?

• What is the model for sharing/communication?

 implied synchronization for message passing, not shared memory

data parallel

(singe thread of control)
dynamic

threads

single program

multiple data (SPMD)

shared memory

load

store

send

receive

message passing

Complication of Work Sharing in

Partitioned Memory

• If tasks are waiting for others to

complete, then need to suspect

tasks for fairness:

– This can blow up the memory space

– CILK and X10 results on “provably

optimal space”: execute by

functional call / stack semantics

until you run out of work

• Run-to-completion:

– Efficient and simpler to implement

– But doesn’t always give the desired

semantics

• Memory partitioning with work

sharing: can run out of memory

locally (GPUs and UPC)

Response of UPC to Challenges

• Small memory per core

– Ability to directly access another core’s memory

• Lack of UMA memory on chip

– Partitioned address apce

• Massive concurrency

– Good match for independent parallel cores

– Not for data parallelism

• Heterogeneity

– Need to relax strict SPMD with at least teams

• Application generality

– Add atomics so remote writes work (not just reads)

34

A Brief History of Languages

• When vector machines were king
– Parallel “languages” were loop annotations (IVDEP)

– Performance was fragile, but there was good user support

• When SIMD machines were king
– Data parallel languages popular and successful (CMF, *Lisp, C*, …)

– Quite powerful: can handle irregular data (sparse mat-vec multiply);

Irregular computation is less clear (search, sparse factorization)

• When shared memory machines (SMPs) were king
– Shared memory models, e.g., OpenMP, Posix Threads, are popular

• When clusters took over
– Message Passing (MPI) became dominant

• When clusters of multicore take over…

– Will PGAS be the dominant programming model?

What does it take to make a programming language successful?

